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A DIFFUSION APPROXIMATION ANALYSIS

OF A GENERAL n-COMPARTMENT SYSTEM

by

John P. Lehoczky1 Donald P. Gayer2

Department of Statistics Department of Operations Research
Carnegie—Mellon University Naval Postgraduate School
Pittsburgh, Pennysivania Monterey , California

15213 93940

ABSTRACT

A new approach to the stochastic analysis of general com-

partment models is presented . The analysis is based on the concept

of diffusion approximations. The state of a compartment system is

represented as the superposition of a deterministic process ,

characterized by a system of ordinary differential equations , and

a random noise process characterized by stochastic differential

equations. All transition rate parameters are permitted to be time

dependent. Numerical solutions are presented for the two—compartment

case, and compared with those of Cardenas and Matis (l975a).

Extensions to non—linear compartment models are discussed .

:LResearch supported in part by Grant AFOSR 74-2642 from the Air
Force Office of Scientific Research.

2Research supported by NSF Grant AG467 at the Naval Postgraduate
School.

-1

___________ ~~~~~~~~~~~ 
•
~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. -



1. Introduction

Quantitative representation of the distribution over time

I! of a drug or pollutant in a human or animal body is now often

carried out in terms of compartment models. Such elements as the

blood, gut, liver , lean tissue, etc., are characterized as homo—

geneous compartments, within which the drug resides for a time,

later to transit to another compartment, perhaps recycling but

eventually vanishing because of evacuation or metabolism mechanisms.

Classical papers in this area, e.g. that by Bischoff et al.

(1971) concerned with use of methotrexate in cancer therapy , pro-

posed deterministic descriptions of flows between compartments,

and stocks within, using differential equation systems . However ,

variations in drug concentrations over replicated experiments

suggest a probabilistic or stochastic representation . Stochastic

compartment analysis has undergone rapid development for several

years, and might be categorized as follows. First, many papers

have emphasized the mathematical formulation and exploration of the

stochastic behavior of a variety of compartment models; papers of

this type are exemplified by Bright (1973), Matis (1972, 1974,

1975a, 1975b), Marcus (1975), Matis and Hartley (1972), Purdue

(l974a, l974b, 1975) , Rescigno (1973) , Rubinow and Winzer (1971)
‘S

1
’ Thakur, Rescigno, and Schafer (1972, 1973), and Thron (1972).

Second, several authors have investigated problems of statistical

inference for the transition rates in stochastic compartment models;

see Burkinshaw and Marshall (1971), Cornfield , Steinfeld , and

:1 1
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Greenhouse (1970), Kodell and Matis (1976), Matis and Hartley (1972),

Rodda et al. (1975), and Shah (1976). Last, the actual application

of compartment models to biomedical , ecological, and chemical systems ,

as well as to pharmacokinetics , has been carried out, for example,

by Metzler (1971), Rödenbeck et al. (1975), Sheppard (1962), Siegel ,

Cooper, and Meisner (1968) and Uppuluri and Bernard (1967). A large

bibliography is given in Jacquez (1972).

The present paper falls into the first category : we suggest

a new approach to stochastic compartment analysis based on mathe-

matical diffusion processes; see Feller (1971) for an introduction ,

and Arnold (1973) and Gikhman and Skorohod (1971) for a systematic

treatment. In short, we write stochastic differential equations

to describe compartment concentration changes , and show that in a

natural limit interesting joint distributions are jointly Gaussian

or Normal. In the literature a variety of different compartment

models have been formulated for one up to n—compartment , reversible

or irreversible, open or closed , systems . These have generally

been characterized by discrete-valued state variables for compart-

ment contents, the latter changing according to multivariate

birth—and-death processes. Kolmogorov forward equations for the

‘S transition probabilities are then derived , and solved by transforms .

Purdue (1974) notes the similarity of these models to those

for infinite server queues. We develop and discuss this connection

in the appendix of this paper. For such discrete models it is poss ible

to write down expressions for the moments of compartment contents at

2
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a fixed time ; under certain conditions (Poisson inputs, transition

rates depend linearly on compartment contents) the contents of the

compartments are statistically independent and Poisson distributed .

Cardenas and Matis (l975a ,b) have extensively investigated such

models. The approach taken here, that of replacing a discrete birth

and death process with a continuous diffusion , is approximate . How—

ever, the results agree with the exact solution in the case of linear

transition rates up to second moments. Furthermore , the limiting

process may be shown rigorously to be norma), allowing the use of

statistical inference procedures validated for normal distributions

and processes. Perhaps more important is the fact that the diffusion

approximation applies to situations with nonlinear transition

Michaelis—Menten—type rates, where “exact” discrete—state methods

yield cumbersome results; see McNeil and Schach (1973) for various

examples concerning populations. It is reassuring to find that the

diffusion approximations often agree exceptionally well with the

birth and d’aath solution; see Gayer and Lehoczky (1975 ,1976) for

numerical comparisons.

2. A Model

We consider a general n-compartment model with time—dependent

transition rates. Let C~~(t)~ i = l,...,n represent the contents

of compartments l,...,n respectively at time t. We assume that

the state of the system C(t) = (C1(t)~~...~
C~~(t)) is a Markov process

with transition probabilities given by

P(L
~~
(t) lt A~~(t)=O~ j~~ i~~,(t)) = NA o~~

(t)dt + o(dt)

i = l ,...,n

P(
~~~

(t)=-l r ~~ (t)=0~ j ~~ i~~~(t)) 
= A~o (t )  C

~~
(t)dt + o(dt)

i = 1, . . .  , n

P(
~~~

(t) —l
~ 

z~~(t)=+l~ ~k
(t) O

~ 
k ~ i,j~~,(t)) = X~~~ (t )  C~~( t ) d t + O ( d t )

4 for 1 < i , j ~ n~ i ~ ~ ~ 0 .

~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
ai



where i~~~( t )  = C . ( t  + dt) - C
~
(t), and N is a parameter that can

be thought of as a dose level, eventually allowed to be large.

The first of the three transition probabilities represents

an increase in compartment i of size 1 from the outside . The

second represents a decrease in compartment i of size 1 to the

outside. Finally , the third represents a transfer of size 1 from

compartment i to compartment j.

The above formulation is rather general , and allows many

different compartment systems to be studied simultaneously . It

allows for an open system if A 0~~(t) > 0 for some i = 1,... ,n

or a closed system if A 0•(t) = 0 for i = l,m ,n. The flows can

be either reversible if A
~~~

(t) > 0 implies X~~~(t) > 0 or

irreversible if A~~~(t) > 0 implies X
~~~

(t) = 0.

We wish to study the case where 
~~~l 

C
~~
(t) is large , say

proportional to some number N. A diffusion approximation arises

when N becomes large and we expand C(t) into terms of order N

and /~ . We can insure that 
~~~~ 

C
~
(t) is large in two different

ways. For open systems we assume , as given in (1), that the

transition probabilities into the system from the outside are them-

selves directly proportional to N. For closed systems where there

is no input from the outside , we must assume that each compartment

has contents proportional to N at time 0, that is C1(0) = Nct (0).

The effect of assuming 
~~~~ 

C
~~
(t) to be proportional to N

is that transitions of all types occur very frequently. As a result ,

in any short time interval there will be many transitions of each

4
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type. Each type of transition represents a change of +1 or -l

in the contents of a certain compartment. In a short time interval

the total change will be a sum of independent Bernoulli random

variables , and , as such , normally distributed by virtue of the central

limit theorem. Actually, much more is true. Focusing on the corn-

partment process {C(t), t > 0) over time rather than at a single

fixed time we see that the process will have normally distributed

increments and hence be Gaussian . This observation is the key to

understanding the diffusion approximation approach . The mathematical

development of this approach is not given here ; see Kurtz (1971)

and Barbour (1972), and the paper by Schach and McNeil (1973).

3. Mathematical Develqpment

In this section we derive the diffusion approximation approach

outlined above in a manner that seems intuitively appealing . The

exposition will be in terms of (Ito-type) stochastic differential

equations; although , as will appear subsequently , the stochastic

differential equations describing stochastic variations in compart—

ment contents are not ambiguous of interpretation. The derivation

to be presented next is supplemented by further discussion , reserved

for the Appendix , that relates the present theory to the approach

by Barbour (1974), and also to infinite server queueing-type models.

5
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Let, then , dC1 (t) = C
1
(t + dt) — C

~~
(t) represent the change

in the contents of compartment i in time (t, t + dt). The

change dC1(t) may be viewed as a sum of independent random

variables:

(a) inputs from outside the system, with mean and variance

NX0.(t) dt;

(b) inputs from compartment j (j ~ i), with mean and variance

A . .  (t) C.(t) dt;
Ji :~

(c) outputs to compartment k (k ~ i), with mean and variance

)
~ik

(t) C~~(t) dt;

(d) outputs from the system via compartment i, with mean and

variance A. (t) C. dt.
iO 1

Represent the change in contents of compartment i in the manner

of d i f fus ion , i.e. in terms of drift and diffusion terms:

dc~ (t )  = [NX
0~~

(t) - 

•~~1
~~~~(t) c~ ( t )  ~Y

1
x~~ c~ ( t ) I  dt

j~~1 j~~i

+ V’NX 01 dw0,(t) 
- ~ VA . . ( t )  C1 (t) dw. .(t) (2)

j =0
j~ i

‘S

+ 
~ 

/~~ ,(t) C~~(t )  dW~~~(t)

i = l,2 ,...,n; C ( 0 )  = N~,(0), and {W
~~~

(t)
~ 

0 < i , j < n , i ~ j } .

is a family of standard Wiener processes, see Arnold (1974) .

6 
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Expression (2) is motivated as follows: the drift term , in

brackets , represents the expected change in C1 (t) over (short)

time interval (t, t + dt), given the states of all compartments

and the corresponding infinitesimal flow rates or transition

probabilities. The remaining terms represent the various random

components of change, modeled as Gaussian random variables ; the

latter is plausible as N on central limit theorem grounds .

For instance , arrivals from outside the system in (t, t + dt)

are Poissonian , and hence for large N, nearly Gaussian ,

with m€an and variance specified by (a) above, and this accounts for

the first bracketed and unbracketed terms in (2).

It is shown in Kurtz (1971) that

C.(t)

N 
-
~ c1(t) as N -

~ in probability ; (3)

see also Baibour (1974). By analogy with the central limit theorem ,

consider the normalized process
C . (t) — Nc. (t)

X.(t) = 
1 1

1 
.

:~ 
hence express the concentration as

C~~(t) = Nc
1
(t) + ~~ X

~~
(t) . ( 5 )

In matrix form, C(t) = Nc(t) + Ii~ X(t)

555

7

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~-~~~~~~~~ ~~~~~~~~~- 5 - ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~



- 
- - - .

_
~~~~- —--.—.-~~--~~-— ---~

- -_ — - “— - ‘ , - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~-.- --— — - -  -‘U
-’

The vector function N~,(t) is referred to as the deterministic

approximation , and /~ X(t) is a stochastic noise process superimposed

upon the deterministic approximation . It remains to characterize

£(t) and ~ (t). The stochastic process ~ (t) = (X1(t),..., X~~(t))

defined by (4) satisfies a stochastic differential equation similar

to (2), and it can be derived from (2) by an application of Ito’s

Lemma (Arnold , p. 90 , or Gikhman and Skohorod , p. 24). The stochastic

1 : differential equation governing X(t) is given by

dX(t) = A(t) X(t) dt + B(t) dW(t)

— ~4I (c’(t) — A Ct) — A(t) c(t)) dt (6)0 ,~~ I.)

• where

A(t) = a. . ( t )  , 1 < i, ~ < n
1J —

with a. .(t) = A . ~~
(t )  for i 

~ 
j ,  a~~~(t) = - 

j~ O 
A
~~~

(t)

¶ 
j~ i

X 0(t) = ( A
01

(t) ,. ..  A On
(t) ) T

W(t) = (W01(t) ,...,W0 (t) , W~0(t) , .. .  
~
Wn0 (t) , W~2(t) , . . .  ,W1 (t) ,

. . .
~~~ 

Wn ,n_ l ( t ) ) T

p B(t) = (b jk ( t ) ) 1 < i < n , 1 < k < n (n+].) H

with

H
8

I 
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b
~~

(t) = /A o~~
(t )  i =

b i (~~~i ) (t) = — /A~~0 (t )  C
~~

( t ) /N

4

i(2n+(i-l) (n-l)+j-l) (t) = 
~
bj(2fl+(i_l) (n-l)+j-l) (t)

• = — s/X~~~(t) C1(t)/N , j  > i

-
~~~ 

bi(2n+(i_l) (n-1)+j) (t) = 
~
bj(2n+(i_1) (n-l)+j) (t)

= - /A . .(t )  C
~

(t ) /N , j < i

and all other bik 
= 0.

We now let N ~ + in (6). First, the terms in B(t)

involving /A1~~(t) C1(t)/N converge to /X
~~~

(t) c
~~
(t). Second ,

equation (6) contains a term proportional to N. The coefficient

of this term must be identically 0 for all t > 0 or (6) will

-

I 

not converge to a finite limit. Consequently ~,(t) must satisfy

C ’ (t) = ~ 0(t) + A(t) £(t) (7)

and , given that £,(t) satisfies (7), equation (6) becomes

‘~

d~~(t) = A(t) ~~(t) + ~~( t )  d,~y(t) (8)

where C1(t)/N terms are replaced by c~~(t) in ~,(t). Note that the

modelling ambiguity sometimes associated with stochastic differential

equation representations , see Arnold (1973), Chap. 10, does not arise

because the dif fus ion coeff icient, B(•), of (8) does not involve X.

9
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The deterministic approximation to S(t) is given by N2(t)

where £ (t )  is characterized by ( 7 ) .  This system of d i f f e ren t i a l

equations is stable in the sense of Liapunov because all eigenvalues

of ~~(t) have strictly negative real parts. The stochastic noise

process superimposed on the deterministic approximation is given by

4~~ ( t )  where X ( t )  is characterized by (8). The stochastic

differential equation given by (8) describes a nonstationary multi-

variate Ornstein—Uhlenbeck process. Much is known about such

processes , see Arnold (1974); we will return to a discussion of the

- noise process in a later section.

4. The Deterministic Approximation

The system of differential equations given in (7) along

-
~ with an initial configuration ,~ (0 )  can be easily solved . If

~~~ t) = 0 , the closed system case , then

c (t )  = exp( f  A ( s ) d s )  ~~ ( 0 )  ( 9 )

where exp (~j ) = I + M + M2/2! + ~~~
.. for  any square matrix M.

For the open system , nonhomogeneous, case with ,~0 (t )  ~ 0 one
t

first multiplies by exp(— f ,~ (s)ds) to obtain
0

H ~~ (e x p ( -f  A ( s ) d s )~~~ ( t ) )  = exp( -f  A ( s ) d s ) ~~A 0 (t )  . (10)

I-
10

4
e 
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This equation can be integrated and the result multiplied by
t

exp(f  ~~( s )d s )  to give
0

£(t) = exp(f A(s)ds) A 0(u)du + exp( J A ( s ) d s ) c ( 0 )  (11)

Equation (11) provides a complete ~olution to the problem of

describing ,~ (t). Simplifications are not possible in general;

however , equation (11) can always be solved numerically by standard

numerical integration techniques. We can consider a special case

which allows equation (11) to be substantially simplified. Suppose

we assume that all transition probabilities , X ..(t), 1 < i < n ,

0 < j  < n, i 
~ 

j ,  exhibit the same time dependence , or that

A..(t) = X ..f(t) where f(t) is some function of time. The

matrix ~~(t) now has the form

A(t) = Af(t) (12)

where

= 

~~ij~ 

A.. 

A . .  

~

‘~ j=0 ‘~
j #i

r

Assume that can be diagonalized and has eigenvalues

0 1, 0 2 , . .  
~‘0n ’ lef t  eigenvectors 

~~~~ ~~ ‘~~n ’ and right eigenvectors

£l’ ” ‘.En~ 
This gives

11
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A (t )  = ,~~,(t )k  with = 
~ , 

( 13)

where = 

~~1’.~2 ’ .. . , r ) ,  ~ = (P.] ~ . .. ‘~~n~~~’ and ~~(t )  is a

diagonal matrix with ith entry 0 1f ( t ) . Equation (13) can be

integrated to give

t
I A(~

)
~~ = u,t)~ (14)

u

5 -  t
with ~~(u ,t )  a diagonal matrix having elements 

~~~ 
f f ( s ) d s ) .

Finally (14 ) can be exponentiated to give

t
exp I A ( s ) d s  = R~ (u,t)~ , (15)

where ~~(u , t) is a diagonal matrix with the ith diagonal element
fi exp (0~ f f ( s ) d s ) .  Equation ( 15) can be plugged back into (11)

to give

t
£( t) = 

~~, 
f ~~(u , t )  ~~~~~(u ) d u  + ,~~~(0 , t ) L~~~( 0) ( 16)

We illustrate the use of (16) by considering an example

discussed by Cardenas and Matis (1975a) . In that paper the authors
t

consider a case with time-dependent transitions for a closed two—

compartment system. For closed systems ,?~0 (u )  = 0 and only the

second term of (16) need be calculated . In this case it is

assumed that

F- ~ .

12
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A
01 
(t) = A 02 Ct) = 0

A
12

(t) = .3/(t+1),

A
10

( t )  =

A
21

(t) =

and A 20 (t )  = .6/ (t+l )

A(s) = ( 1
and

/ — .8 .4\
A =  J ,

.3 —1 1 5 ] .

The matrix ~ has eigenvalues 01 = - .9 + /TL
t O S

0 2 = — .9 — fT~~. Also e x p (0 .  f f ( s ) d s )  = (1+t) ‘. It is easy
‘0

to calculate

/ 1 1 \/(l+t) 1 0 \ / . 12/ ( . 12+a 2 ) .4a/ ( . 12+a 2 )\
z(t ) = 1 11 0 2 11 2 2 J c ( 0 )

\ a/4 b/4/ \ 
0 ( l+t)  J\ . 12 / ( . 12 + b  ) .4 b/ ( . l2 + b  )J

a = — . l+ vTI~ ( 17)

b = - .l - /T~

Equation ( 17) may be expanded to y ield

!‘ 13
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e
c1(t) = ( .638675049lc 1(0 )  + .554700 1962c 2 ( 0 ) )  (l +t) 1

+ ( .36l324909c 1(0 )  — .554700 1962c 2 ( 0 ) )  ( l+t) 2

(18)
0

c2(t) = ( .4l60251472c 1( 0 )  + .36 13249509c 2 ( 0 ) )  ( 1+t) 1

0 2
+ (— .4l60251472c1(0) + .6386750491c2

(0)) (1+t)

with

- 
S- Oi 

= — .5394448725

02 = —1.2605551275

Transition probabilities for this model were approximated

by Cardenas and Matis using a truncated infinite series approach .

These transition probabilities can be derived directly from (18)

by establishing appropriate initial conditions. For example , by

setting c1(0) = 1, c2(0) = 0, c1(t) and c2(t) become p11(t)

and p12(t), respectively. By setting c1(0) = 0, c2(0) = 1,

c1(t) and c2(t) become p21(t) and p22 (t), respectively . The

results derived from (18) are compared with the approximations

of Cardenas and Matis in Table 1. These results illustrate the

accuracy of the deterministic approximations in (18), since the

two answers agree to at least 8 significant figures. Furthermore ,

the numbers derived from (18) always exceed the Cardenas and

Matis results. This is reasonable since the latter approximation

is derived by truncation and is hence an underestimate of the true

value.
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The results in (18) i l lustrate another very important

point. Compartment modelling has been criticized because it only

allows levels which are mixtures of exponentials in t when,

- in fact, these models often do not fit data well (See Marcus

(1975) p. 339 and Matis (1972). Much more complicated functions

are required to give adequate fits including gamma, Pareto,

Pareto—exponential , and first passage density functions. One can

see that all of these types of functions can be produced by

appropriate choice of f ( t ) .  Mixtures of exponentials arise when
- 

- f ( t ) E 1; however , an enormous class of level functions can be

produced by varying choices of f ( t ) . The introduction of time

dependent transitions not only adds realism but produces models

which can f i t  real data sets.
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t Equation (18) Cardenas and Matis
- 4 -term approximation

1 .5902421829 .5902421826

2 .4435620915 .443 5620872
p11(t)  3 .3652902915 .3652902729

4 .3155676392 .3155675836

5 .28070309 64 .2807029846

1 .5151767471 .5151767467
2 .3596617846 .3596617805
3 .2823115397 .2823115195

• 4 .2356325933 .2356325396

5 .2041834275 .2041833201

1 .1501308716 .1501308715 
-

2 .1678006137 .1678006133
- - p21 (t) 3 .1659575075 .1659575068

4 .1598700918 .1598700879

5 .1530393378 .1530393292

1 .1125981537 .1125981539
2 .1258504603 .1258504600
3 .1244681306 .1244681301

‘C 4 .1199025689 .1199025659 - 
-

5 .1147795033 .1147794969

TABLE 1: A Comparison of the Deterministic Approximation
-
~~ 

( 18) with the Cardenas and Matis Four Term
Approximation .
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5. The Noise Process

• The stochastic elements of the compartment process {~~( t ) ,  t > 0)

are embodied in the nonstationary multivariate Ornstein-Uhlenbeck

process described by ( 8) .  We summarize a few key results about

such processes. These results are well known and available in

• Arnold , Section 8 .2 .  First , we assume ~~(0 )  = ,9 that is the init ial

condition is nonstochastic and embodied in ~~(0 ) . The marginal dis-

tribution of X ( t )  is

x (t )~~’ ’1~~(O , £(t)) (19)

that is an n-dimensional multivariate norma l distribution where Z ( t )

is the unique nonnegative defini te  solution of the matrix Riccati

equation

E ’  (t )  = A ( t )  ~~(t )  + ~~(t )  AT(t) + B ( t )  BT ( t) (2 0 )

Since C ( t )  = N c ( t )  + /~1 ~,(t )  we f ind

C ( -t ) ‘
~
.‘ ‘7/n (Nc(t ) , N~,(t)) (21)

Let 8(t )  ~,
T t = 2 ( t )  and ~~( t )  = (d

~~~
(t)) with

‘S

d
~~

(t) = ( x 0~ (t )  + 
j~ 0 

x
~~

( t )  c
~~
(t) + 

j~ 1 
A~~~(t) c~ (t))

( 2 2 )
d
~~

(t )  = — (A~~~(t) c~~
(t) + X~ 1(t) c~~(t))

S 17
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The covariance matrix E ( t )  can be calculated by various

numerical methods applied to (20) . We i l lustrate the calculation

in the case n = 2 studied by Cardenas and Matis.

/ — (A 10 (t) +A~ 2 (t)) A~ 1 (t)
A(t) = I I
f.1

A 12 (t) —(A 20 (t)+A 21 (t))/

/a11(t) a12(t)

Z(t) = I
‘V \cY12(t) a22(t)

Equation (20)  becomes

s ( t) = G ( t )  s (t )  + H ( t )  (23)
& lu

.: where

s(t) = (a11 (t), a12 (t), a22 (t))’

G(t)
Al

/—2 (x10(t)+x12(t)) 2A 21 (t )  0

= ( A12 
(t )  - ( A

10 
(t) + A20 (t) + 112 (t) + A21 (t)) A21 (t)

0 2 A 12
(t) — 2 ( A

20
(t) +X 21

(t)
))

/ A~~ (t) + ( h o (t) + 
h2 

(t )  c1 ( t )  + (t) c2 (t))

~ (t) = 

( 

— ( A
12 (t) c1 (t) + A21 

(t )  c2 (t))

\ 102(t) + ~12 (t ) c
1

(t )  + (A 20(t) + 121(t ) c
2

( t ) )

Equation (23)  can be solved in exactly the same manner as ( 7 )  with

init ial  conditions s ( 0 )  = ~~~, that is C ( O )  is deterministic. We

f i nd
18
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t t
s(t) = f exp( f  G(s)ds)~~3(u)du . (24)

0 u

For the case considered by Cardenas and Matis

/ —1.6 .8 0 \
~ (t) = .3 -1.8 .4) +

0 .6 —2

The matrix ~ has eigenvalues 
~l’ ~2 ’ ~3 where

= 20
~ 

= —1 .978889745

~2 
0
1
+ 0

2 = 1.8,

= 20 2 = —2.521110255

0 —1 02
_i

k11(u+1) 
~ + k12 (u+l)

~~(u) = 

(k
21 (u+l)  

01
_i 

+

k31(u+1) 
+ k32 (u+i)

where the ~~~ coefficients are computing from ( 18) . The other

factor in the integrand is given by

‘ 
-
~4~(i+t l 1 0 0

exp 2 (s) ds  = 0 (i+t~
2 

0

0 0 
(l+t
\l+u

L with

19
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/ 1 1

R = ( .6513878188 — .25 —1.15 1387819

.4243060905 — .75 1.32569391

/ .407957184 .7085463502 .3076923077\

L = ( .4615384615 — .3076923077 — .6153846153 )
.1305557202 — .4998540425 1 /

can now be easily found. Each of the three variance—covariance

terms is a linear combination of terms of the form

(l+t) ((l+t) ~ — ~~~~~~~~~ .

The Ornstein Uhlenbeck process described by (8)  also has a

known covariance function k ( s , t) = Cov ç~~( s ) ,  ~~(t)). The function

k ( s , t) is given by the equation (T denotes transpose)

P min(s,t) —1 T -l T Tk(s,t) = ~,(s) f ~~, (u) ~~(u) ~ (u) 
~Z (u)) du ~~, 

(t) (25)

with
u

~(u) = exp(f A(s)ds)
0

We do not use the covariance function in this paper; however ,

this function is important in the development of a statistical

analysis of data from a compartment model. One may have data , say

readings of drug concentrations in the blood stream , and wish to

20 
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estimate the parameters of the model , the A 1~~’s. Given the data

have a multivariate normal distribution, the likelihood funct ion

can be wri t ten and estimators derived . The papers of Hartley

~ and Matis (1971) and Kodell and Matis (1976) provide analyses

in special cases. The results of this paper indicate that these

• kinds of results can be carried much further into far more general

compartment models.

6. Steady State

In the case X0(t) ~ .9, 
an open system , the system will

approach steady state if A~~~(t) 
-

~ 

as t -
~ + ~~~~. Steady state

is a condition whereby the probability distribution which describes

the marginal distribution of the system becomes time homogeneous

even though the actual contents of the compartments continue to

vary according to (8). The steady—state solution for a simple exa~ - ‘e

is described in the Appendix.

The process {C(t), t > 0} in steady state can also be

approximated by Nc + /i~ X ( t )  where

0 = 4o + Ac or c = (26)

and {x(t) , t > 0) satisfies
S..
. —

21
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dx( t) = A X ( t )  + B d W (t )  (2 7 )
A) .‘CJF~J

a stationary mult ivariate  Ornstein-Uhlenbeck process . This mean s

that

~~~~~~~~~~~~~~~~~~ 
N,~) (28)

where ~ is the unique nonnegative defini t ion solution of

+ 
,

~~~~~~~~ = -~~~~~~~~~ . (29 )

As an illustration we consider a two compartment open system ,

either reversible or irreversible

/ _ ( 1l0+112 ) A
21

= 

0 — ( A
20+A 21

)

/ X01+(X10+X12)c1+A 21c2

BBT = ( — (A 12c1+ A 21c2) ) (30)

A 02+A 12c1+ (A 20+A 21)c2 
/ 

-

/x 20 +A 2.. 1
12 \11o \

c = 

X 10+X 12/
!
~\ A 02 )

20 2l~ 10 l2~ 12 21

~ 
S .
’

-
~ 

22
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( G \  
= 

(2 (A ]0 +A j 2 ) 

(A +A + i - ~-A ) ~A \ BB. 31)
- - 

.
~

- I a121 \ 12 10 20 12 2 1 21

0 _ 2 A
l2 2 ( A 20 +121 ) f

Equations (30)  and (31) thus complete the descript ion of

the multivariate normal density given in ( 2 8 ) .  While the n = 2

case can be done in closed form , the general case can be easily

F ~ solved by numerical methods .

7. Extension to Nonlinear Models

The technique of di f fusion approximations outlined and

applied to general linear compartment models in the previous

section also provides a tractable approach to handling nonlinear

models. The compartment modelling literature is vast and the

area is still in rapid development . Nevertheless , papers involv nq

a stochastic process approach assume a linear system , that  is ,

one in which transition rates from I to j are proportional t-

the contents of the ith compartment. It is unl ikely that real

pharmacokinetic processes operate so simply. Rather , the

transition rates are more likely to be complicated funct ions of

the contents of several compartment levels , and of time . Such

complicated models have not appeared in the l i terature, perhaps

because they present serious mathematical intractabilities using

the standard Kolmogorov forward equations analysis.

23
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The method of diffusion approximations can effectively

handle nonlinear transition rates. The deterministic approximation

will be a system of nonlinear ordinary differential equations.

This will only rarely be solvable in closed form. Nevertheless,

the numerical solution of such systems is a standard topic in

numerical analysis. The important observation is that the stochastic

differential equation representing the noise process superimposed

upon the deterministic process will be nonstationary but linear

(often Ornstein-Uhlenbeck). This means that the diffusion approxi-

mation approach will yield analytic results for nonlinear systems ,

since many results are readily available for linear stochastic

differential equations (see Arnold , Chapter 8). It is hoped that

this approach will encourage pharmacokinetic researchers to con-

sider introducing nonlinear models should an analysis of data

indicate the need.

Two additional points should be made. First , the analysis

presented can be easily carried out when the process is represented

in terms of volume and concentration rather than in terms of

total contents . Second , the method of d i f fus ion  approximations

illustrates that the compartment system contents will have a

marginal Gaussian distribution. As such, one is in a position

to give a statistical ana lysis of such a system either to estimate

• transition rates or , indeed , to design an experiment to make

proper inferences about such parameters.

~6
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APPENDIX

The purpose of this appendix is to fur ther  j u s t i f y  the

earlier analysis , in pa r ticular , equations (7 )  and (8 )  and their

implications. We do this in certain tractable simple cases , namely ,

those of one and two components.

1. The Theory of Kurtz (1971) and of Barbour (1974).

In Section 2 of Barbour (1974) ,  hereafter called B ,

assumptions are given that imply convergence of the sequence of

processes

/c (t) \ C (t) — Nc (t)
= ~~~~~ 1

N 
- S ( t ) J  = ~N ‘~‘ 

, N = 1,2,3,..., (A l)

to the diffusion y(t), as N -
~ in D(0,T), i.e. the space of all

right-continuous functions with left-hand l imits.  Note that the

y ( t )  of B will turn out to be the same as our stochastic noise

process X ( t ) . We shall ver i fy  these assumptions f or i l lustrative

cases .

First consider the sequence of continuous parameter Markov

processes xN ( t) = CN (t ) /N  on [0 ,T ] ,  where ~ N (t )  is the many-

compartment model whose transitions are described by our (1).

Notice that the changes in ~~~(t )  are of size 0 , ± I/N , and that

the infinitesimal transition rates are of the form NA 01, and

NA
~~~

(C
~~
(t)/N )

~ 
as specified by ( 2 .l ,B). We now discuss the assump—

tion and the Theorem K of B for these i l lustrat ive si tuat ions.

0-
,
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Single-Compartment Model. Let 101(t) = )~~~~~~ ‘ and

A 10(t) = constant and positive, and n = 1, which represents

a single-compartment system.

It is easily seen that there is a unique function E~(t)

sat isfying,  for 0 < t < T, the natural deterministic equation ,

(2 . 2 ,B ) :

~~~
‘ (t ) = -101 

- A 10~~(t)  . (A-2)

The solution is , putting ~ (0 )  = c(~)),

~ (t )  = c ( O ) e  10 
+ 

~~~~~~ ( l-e 10 ) = ( c ( 0 )  - 

~~~ 
) e~~~~°~ + , (A-3)

which is unique ; hence B’ s As sumption A is jus t i f i ed. Suppose

0 < c ( 0 )  < 1
01/A 10 for example; other cases may be treated in

analogous fashion. Then, in the terminology of Barbour (1974),

+ s = [c(0), c(0) e
_A T 

+ ~~~~~~~~~ (1 - e
h10T
)]

and r A - A T  1
S

E 
= L~

0 — c, c(0) e~~
T 

+ (l—e 10 
~ + cj  , (A 5)

10

where 0 < c < c ( 0 )  suf f ices .  Clearly the transition rates are

multinomial wi thin 5
E
, and B’ s Assumption B is also justified . Now

Theorem K follows, and implies that yN(t) = /~ (x~ (t) 
-

converges to the d i f fus ion  y(t), y(O) = 0 , with the characteristic
+ “ &

I
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iey (t)
function ~ ( o , t )  = E L e  I sa t i sfy ing the d i ff e r e n t i a l  equation

= 
~

6A 10 ~~
-
~~

- — ~ o 2 [101 + \10~~ t)~~ 
(A—6)

recognizable as describing the Ornstein-Uhlenbeck process

whose stochastic differential equation is

dy = —A 10ydt + /101 + A 10~~(t) dW , (A-7)

thi s being the same s.d .e .  as that obeyed by our noise process

X for the present setup . Hence the procedure leading to our

equations ( 7 )  and (8) yields the same results as those rigorously +

established by Kurtz , adapted by Barbour .

Note , too , that a steady—state solution will exist: simply

set ~~~
‘ = 0 in (A-2)  to discover the deterministic component:

F~(c~ ) = 101/110. The stochastic noise has , f rom (A — 6 ) or ( A — 7 ) ,

variance equal to the mean , name ly ,  101/110. Thus the steady-state

compartment content is , according to our theory , approximately

?? (NA 01/A 10, NA 01/A 10 ) ,  as N becomes large . This is in accord

with the fact that the exact distribution is Poisson (NA 01/A 10 ) ,

as is well-known , and shown again subsequently in this Appendix.

‘S +

‘S
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Two-Component Model. Here C(t) = (C1(t) , C2(t)), the

allowed transitions and rates are summarized below .

Transitions Transition Rates

C1(t) , C 2 (t )

a) C1(t) + 1, C2(t) 
NA 01

(C1 t)
b) C1(t) 

— 1, C2(t) 
NA 10 ‘\ N

(A—8)
(t)

c) C1(t )  — 1, C2(t) + 1 NA 12 ~ N

+ /C 2(t)
d) C1(t) , C2(t) 

— 1 NA 20 “ N

State scaling, as in (2.1,B) alters the 
± 1 changes to ~ 

1/N.

The function ~ (t )  = (~ 1(t), C2(t)) satisfies the differential

equations

= ~~ — 

~~l0 ÷ A l2 )~ l
(A—9)

= ~~~~~ - A 20~ 2

For simplicity, we have not allowed entries i’~to compartment 2

t from outside , and have also omitted back flow from compartment 2

to compartment 1. The two equations are readily solved to produce +

a unique solution for all t > 0:
‘S

A
= c1(0 ) ex p [— ( 1 10 + 112 )tJ + 

~~~~~ 

[1 — exp(— (110+ A 12)t)}

32
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A A
= c20 exp (—A 20t) + 

01 [1 — e x p( -~ 20 t ) ]
10 12

+ 5 1 A oi 1 112
+ Ld 1( o) — 

110 + 112] 
120 

— (110 + 112)

x [ e x p ( — ( 1 10 + A 12 ) t )  - exp (—A20t)] (A—b )

Thus Assumption A is satisfied, with c 1(0), c2(0) > 0. Assumption B

is also satisfied with

0 < E < min R 1(T) , ~ 2 (Tfl ( A — l l )

where

= mm E~. (T) > 0, i = 1,2;
- ; 0 < t < T

It is clear from the differential equations that such values will

always exist. Hence

= N~~
2 (2N ( t)  

- 
~(t))

converges weakly to a bivariate diffusion . Proceeding further ,
r 

Sevaluate the characteristic function of the limiting noise,

E [exp(i0 1y1(t) + i02y2(t))] = ~ (01, 02 , t ) ;  (A—l2) -
‘

The latter satisfies the following partial differential equation ,

from ( 2 . 7 ,B) :

I
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= [—0~ X~~ + (
~
0l + 02)A l2]~~O 

— 02+
~20~ e2

— 
~~
. [0~ A~~ + 0~ A 10~ 1(t) + (_0

l
+0

2
)2
~ ~~ (t)~ 

0~~A 20~ 2 ( t ) ]~

(A— 13)

This is recognizable as describing a bivariate Ornstein-Uhlenbeck

L process. Now one may differentiate (A-l3) at 01 = 82 = 0,

utilizing the fact that

V
~
(t) = E[y~~(t)] = —~ 0 0 (O,O,t), i = 1,2,

and

V12(t) = E[y1(t) y2(t)] = —~ 0 0 (0,0,t)

to derive differential equations for the elements of the variance-

covariance matrix of y. Not surprisingly, these differential

equations agree with (23) (with 1ij  constant, and , in this case ,

121 = 0), i.e., V1(t) = a11 (t) , V12 (t) = a12 (t )  , V2 = a
2~ 

(t )

Th us if the same initial conditions are adopted for ~~ , c and
gU AI +

for ~~~ , and X the deterministic and noise components of the

approximation: of this paper and of B are seen to be identical.

The validation can be extended with no difficulty in principle

to the general situation.

34 +
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2. Relation to Infinite-Server and Linear Markov Population Models

The class of compartment models described by the transition

scheme (1) are similar to the classical Poisson—arrival infinite—

- 
- server models of queueing theory and identical to certain Markov

population models of Bartlett (1949), and Kingmari (1969) . We

now briefly explore the connection , illustrating by the single-

compartment and two—compartment examples. In particular , it will

be shown that, even in the time-dependent parameter case, limiting

Gaussian marginal distributions occur for compartment contents ,

in agreement with the development of the paper.

Single-Compartment Model. Let C1 (t,u) denote the number

5 of arrivals to the system that have occurred in the time interval

(u,t), 0 < u < t, and that are present in compartment 1 at time t.

Let 11(t,u) be the probability that an arrival occurring at

time u is present in compartment 1 at time t. Consider the d
generating function of

C1(t,u)E[z1 I = g(z1,t;u) (A—14)

Now by the assumption of Poissonian arrivals , see (1) , we may

write

g ( z 1, t ,u ) = [z 111(t , u )N 1 01 ( u ) d u + 1 — I 1(t , u )NA 01 ( u ) d uj  g ( z 1, t , u + d u ) ,

- S (A—15)

3
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where the bracketted expression is the generating funct ion  of the

contribution to C1(t , u) from arrivals during (u, u + du) ;

independence permits the multipication . Subtract g(z1,t;u + du)

from both sides, divide by du , and let du -
~ 0. The differential

equation

dg(z1,t;u)
— 

du 
= g ( z 1, t; u) [ ( z 1—1) 11(t ,u) NA 01 (u ) d u l  (A—16)

results, the solution of which is, when u is set equa l to zero ,

C (t) t
g(z11 t;0) E[z1

1 C1(0) 0] = e x p [ ( z 1— l ) N  f 11(t,u)101(u)du]

(A—l7)

the generating function of the Poisson distribution with mean

N f I1(t ,u) A 01(u)du. It now follows immediately from the central

limit theorem that the distribution of

t
C1(t) 

— N I 11(t,u) A 01(u)du
X1(t) = (A—l8)

-~~ converges weakly to the normal law with mean zero and variance

f I1(t,u) A 01(u)du . Furthermore, it is easy to ver i fy  that

t A — A t
Var [y(t)] = f I

1(t,u) A 01du = ~~~~~~~ (1 - e 10

0 10

36
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when A ol and A 10 are both const.~nts, and y(t) is the solution

of the stochastic differential equation (A-7) which results from

following the approximation program that is the topic of the pape r ;

we start with C1(0) = 0. Verification in the time-dependent

parameter case is also possible , but is more difficult. Thus the

correct marginal distribution is verifable directly for this ,

the simplest, case. With more labor the joint distribution at

different times may be found using an extension of the technique .

Two-Compartment Model. Consider the generating function

of (C1(t,u), C2
(t ,u)), denoted by g(z1,z2,t;u) . Then an argument

analogous to that joint presented shows that g satisfies a

differential equation , which when solved yields

g ( z 1, z 2 , t ; 0 )  = e x p L N { ( z 1— l )  f 11(t ,u) 101 (u)Uu

t
+ (z2~

l) f I2(t,u) 101
( u ) c J u I l  (A—l9)

- 
-., implying that the contents of the two compartments ar e Poisson

distributed at time t, and that C1(t) and C2 (t) arE’ independent.

The same central limit theorem argument now shows joint normality

as N -
~ in agreement with the claims of the body of the paper.

- -
~~ Calculations oniit-tpd here show that the d i f f u s i o n  ~1p1~~oximat ion pro-

duces f i rs t  and second moments that  agree with  those of the Poi ssc~
input model above . In particular , the correlat ion term , ~~~~~ - .~f ~20)

equals zero , s igni fying the independence that  we n ot :~ i n  (A-1~~).
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